Classification accuracy of quantized Autoencoders with Pytorch and MNIST

Marton Trencseni - Fri 09 April 2021 • Tagged with python, pytorch, cnn, torchvision, mnist, autoencoder

I measure how the classification accuracy of quantized Autoencoder neural network varies with encoding bits on MNIST digits.

Classifier accuracy on quantized Autoencoder output after quantization

Continue reading

Investigating information storage in quantized Autoencoders with Pytorch and MNIST

Marton Trencseni - Sun 04 April 2021 • Tagged with python, pytorch, cnn, torchvision, mnist, autoencoder

I investigate how much information an Autoencoder neural network encodes for MNIST digits.

Pytorch Autoencoder loss with encoding dimension and quantization bits

Continue reading

MNIST pixel attacks with Pytorch

Marton Trencseni - Sat 01 June 2019 • Tagged with python, pytorch, cnn, torchvision, mnist, skl

It’s easy to build a CNN that does well on MNIST digit classification. How easy is it to break it, to distort the images and cause the model to misclassify?

MNIST attack accuracy

Continue reading

Solving CIFAR-10 with Pytorch and SKL

Marton Trencseni - Tue 14 May 2019 • Tagged with python, pytorch, cnn, torchvision, cifar, skl

CIFAR-10 is a classic image recognition problem, consisting of 60,000 32x32 pixel RGB images (50,000 for training and 10,000 for testing) in 10 categories: plane, car, bird, cat, deer, dog, frog, horse, ship, truck. Convolutional Neural Networks (CNN) do really well on CIFAR-10, achieving 99%+ accuracy. The Pytorch distribution includes an example CNN for solving CIFAR-10, at 45% accuracy. I will use that and merge it with a Tensorflow example implementation to achieve 75%. We use torchvision to avoid downloading and data wrangling the datasets. Like in the MNIST example, I use Scikit-Learn to calculate goodness metrics and plots.

CIFAR examples

Continue reading

Solving MNIST with Pytorch and SKL

Marton Trencseni - Thu 02 May 2019 • Tagged with python, pytorch, cnn, torchvision, mnist, skl

MNIST is a classic image recognition problem, specifically digit recognition. It contains 70,000 28x28 pixel grayscale images of hand-written, labeled images, 60,000 for training and 10,000 for testing. Convolutional Neural Networks (CNN) do really well on MNIST, achieving 99%+ accuracy. The Pytorch distribution includes a 4-layer CNN for solving MNIST. Here I will unpack and go through this example. We use torchvision to avoid downloading and data wrangling the datasets. Finally, instead of calculating performance metrics of the model by hand, I will extract results in a format so we can use SciKit-Learn's rich library of metrics.

MNIST example digits

Continue reading