A/B testing and Multi-armed bandits

Marton Trencseni - Fri 07 August 2020 • Tagged with ab-testing

Multi-armed bandits minimize regret when performing A/B tests, trading off between exploration and exploitation. Monte Carlo simulations shows that less exploration yields less statistical significance.

Epsilon-greedy

Continue reading

Understanding Facebook’s Planout A/B testing framework

Marton Trencseni - Fri 22 May 2020 • Tagged with ab-testing

PlanOut is a framework for online field experiments. It was created by Facebook in 2014 to make it easy to run and iterate on sophisticated experiments in a statistically sound manner.

Planout

Continue reading

Validation checks for A/B tests

Marton Trencseni - Thu 16 April 2020 • Tagged with ab-testing

A/B tests go wrong all the time, even in sophisticated product teams. As this article shows, for a range of problems we can run automated validation checks to catch problems early, before they have too bad of an effect on customers or the business. These validation checks compare various statistical properties of the funnels A and B to catch likely problems. Large technology companies are running such validation checks automatically and continuously for their online experiments.

Kolmogorov-Smirnov test

Continue reading

Running multiple A/B tests in parallel

Marton Trencseni - Mon 06 April 2020 • Tagged with ab-testing

I show using Monte Carlo simulations that randomizing user assignments into A/B test experiments makes it possible to run multiple A/B tests at once and measure accurate lifts on the same metric, assuming the experiments are independent.

Watts-Strogatz

Continue reading

Bayesian A/B conversion tests

Marton Trencseni - Tue 31 March 2020 • Tagged with bayesian, ab-testing

I compare probabilities from Bayesian A/B testing with Beta distributions to frequentist A/B tests using Monte Carlo simulations. Under a lot of circumstances, the bayesian probability of the action hypothesis being true and the frequentist p value are complementary.

Bayes vs z-test

Continue reading

A/B testing and the G-test

Marton Trencseni - Mon 23 March 2020 • Tagged with ab-testing

The G-test for conversion A/B tests is similar to the Chi-squared test. Monte-Carlo simulations show that the two are indistinguishable in practice.

G-test vs Chi-squared p differences

Continue reading

A/B testing and networks effects

Marton Trencseni - Sat 21 March 2020 • Tagged with ab-testing

I use Monte Carlo simulations to explore how A/B testing on Watts–Strogatz random graphs depends on the degree distribution of the social network.

Watts-Strogatz degree distribution

Continue reading

A/B testing on social networks

Marton Trencseni - Mon 09 March 2020 • Tagged with ab-testing

I use Monte Carlo simulations to show that experimentation on social networks is a beatiful statistical problem with unexpected nuances due to network effects.

Watts-Strogatz

Continue reading

Early stopping in A/B testing

Marton Trencseni - Thu 05 March 2020 • Tagged with ab-testing

Increased false positive rate due to early stopping is beautiful nuance of statistical testing. It is equivalent to running at an overall higher alpha. Data scientists need to be aware of this phenomenon so they can control it and keep their organizations honest about their experimental results.

Early stopping

Continue reading

A/B testing and Fisher's exact test

Marton Trencseni - Tue 03 March 2020 • Tagged with ab-testing

Fisher’s exact test directly computes the same p value as the Chi-squared test, so it does not rely on the Central Limit Theorem to hold.

Fisher's test, Fisher Monte Carlo and Chi-squared test p values

Continue reading

A/B testing and the Chi-squared test

Marton Trencseni - Fri 28 February 2020 • Tagged with ab-testing

In an ealier post, I wrote about A/B testing conversion data with the Z-test. The Chi-squared test is a more general test for conversion data, because it can work with multiple conversion events and multiple funnels being tested (A/B/C/D/..).

Chi-squared distribution

Continue reading

A/B testing and the t-test

Marton Trencseni - Sun 23 February 2020 • Tagged with ab-testing

The t-test is better than the z-test for timespent A/B tests, because it explicitly models the uncertainty of the variance due to sampling. Using Monte-Carlo simulations I show that around N=100, the t-test becomes the z-test.

Normal distribution vs t-distribution

Continue reading

A/B testing and the Z-test

Marton Trencseni - Sat 15 February 2020 • Tagged with ab-testing

I discuss the Z-test for A/B testing and show how to compute parameters such as sample size from first principles. I use Monte Carlo simulations to validate significance level and statistical power, and visualize parameter scaling behaviour.

Conversion difference vs N

Continue reading

Beyond the Central Limit Theorem

Marton Trencseni - Thu 06 February 2020 • Tagged with data, ab testing, statistics

In the previous post, I talked about the importance of the Central Limit Theorem (CLT) to A/B testing. Here we will explore cases when we cannot rely on the CLT to hold.

Running mean for Cauchy distribution

Continue reading

A/B testing and the Central Limit Theorem

Marton Trencseni - Wed 05 February 2020 • Tagged with data, ab testing, statistics

When working with hypothesis testing, the desciptions of the statistical method often has normality assumptions. For example, the Wikipedia page for the z-test starts like this: "A Z-test is any statistical test for which the distribution of the test statistic under the null hypothesis can be approximated by a normal distribution". What does this mean? How do I know it’s a valid assumption for my data?

Normal distribution from uniform

Continue reading

Optimizing waits in Airflow

Marton Trencseni - Sat 01 February 2020 • Tagged with data, airflow, python

Sometimes I get to put on my Data Engineering hat for a few days. I enjoy this because I like to move up and down the Data Science stack and I try to keep myself sharp technically. Recently I was able to spend a few days optimizing our Airflow ETL for speed.

Airflow DAG

Continue reading

SQL best practices for Data Scientists and Analysts

Marton Trencseni - Sun 26 January 2020 • Tagged with data, programming, sql

My list of SQL best practices for Data Scientists and Analysts, or, how I personally write SQL code. I picked this up at Facebook, and later improved it at Fetchr.

SQL code

Continue reading

How I write SQL code

Marton Trencseni - Fri 24 January 2020 • Tagged with data, programming, sql

This is a simple post about SQL code formatting. Most of this comes from my time as a Data Engineer at Facebook.

SQL code

Continue reading

Small team planning

Marton Trencseni - Fri 10 January 2020 • Tagged with planning, teams, goaling

I’ve worked at 5-10 different organizations, most of them were startups or startuppy companies. I’ve done a lot of planning in small teams, and also taken part in company-wide leadership planning. Here I will describe what has worked well for me in small team settings, focusing on time estimation.

Reaching the peak

Continue reading

Personal goaling

Marton Trencseni - Sun 22 December 2019 • Tagged with self help, goaling

The meta-goal of goaling is to stretch yourself to achieve more, and to feel good about what you’ve achieved. Whatever happened this year, it’s always possible to achieve a lot more and feel better about yourself next year. To hijack a Feynman quote, there is plenty of room at the top.

2019 running

Continue reading