Understanding Facebook’s Planout A/B testing framework

Marton Trencseni - Fri 22 May 2020 • Tagged with ab-testing

PlanOut is a framework for online field experiments. It was created by Facebook in 2014 to make it easy to run and iterate on sophisticated experiments in a statistically sound manner.


Continue reading

Validation checks for A/B tests

Marton Trencseni - Thu 16 April 2020 • Tagged with ab-testing

A/B tests go wrong all the time, even in sophisticated product teams. As this article shows, for a range of problems we can run automated validation checks to catch problems early, before they have too bad of an effect on customers or the business. These validation checks compare various statistical properties of the funnels A and B to catch likely problems. Large technology companies are running such validation checks automatically and continuously for their online experiments.

Kolmogorov-Smirnov test

Continue reading

Running multiple A/B tests in parallel

Marton Trencseni - Mon 06 April 2020 • Tagged with ab-testing

I show using Monte Carlo simulations that randomizing user assignments into A/B test experiments makes it possible to run multiple A/B tests at once and measure accurate lifts on the same metric, assuming the experiments are independent.


Continue reading

Bayesian A/B conversion tests

Marton Trencseni - Tue 31 March 2020 • Tagged with bayesian, ab-test

I compare probabilities from Bayesian A/B testing with Beta distributions to frequentist A/B tests using Monte Carlo simulations. Under a lot of circumstances, the bayesian probability of the action hypothesis being true and the frequentist p value are complementary.

Bayes vs z-test

Continue reading

A/B testing and the G-test

Marton Trencseni - Mon 23 March 2020 • Tagged with ab-testing

The G-test for conversion A/B tests is similar to the Chi-squared test. Monte-Carlo simulations show that the two are indistinguishable in practice.

G-test vs Chi-squared p differences

Continue reading

A/B testing and networks effects

Marton Trencseni - Sat 21 March 2020 • Tagged with ab-testing

I use Monte Carlo simulations to explore how A/B testing on Watts–Strogatz random graphs depends on the degree distribution of the social network.

Watts-Strogatz degree distribution

Continue reading

A/B testing on social networks

Marton Trencseni - Mon 09 March 2020 • Tagged with ab-testing

I use Monte Carlo simulations to show that experimentation on social networks is a beatiful statistical problem with unexpected nuances due to network effects.


Continue reading

Early stopping in A/B testing

Marton Trencseni - Thu 05 March 2020 • Tagged with ab-testing

Increased false positive rate due to early stopping is beautiful nuance of statistical testing. It is equivalent to running at an overall higher alpha. Data scientists need to be aware of this phenomenon so they can control it and keep their organizations honest about their experimental results.

Early stopping

Continue reading

A/B testing and Fisher's exact test

Marton Trencseni - Tue 03 March 2020 • Tagged with ab-testing

Fisher’s exact test directly computes the same p value as the Chi-squared test, so it does not rely on the Central Limit Theorem to hold.

Fisher's test, Fisher Monte Carlo and Chi-squared test p values

Continue reading

A/B testing and the Chi-squared test

Marton Trencseni - Fri 28 February 2020 • Tagged with ab-testing

In an ealier post, I wrote about A/B testing conversion data with the Z-test. The Chi-squared test is a more general test for conversion data, because it can work with multiple conversion events and multiple funnels being tested (A/B/C/D/..).

Chi-squared distribution

Continue reading